

Strider Duerinckx Telephone 0402608396 Email <u>strider@ewcon.com.au</u> Web: www.ewcon.com.au

Christine Frewin, C/- Keiley Hunter

Date: 16 June 2021

By email: keiley@keileyhunter.com.au

Re: Land Capability Assessment for 14-22 Smiths Road, Emerald Beach

Dear Madam

Please find attached the Land Capability Assessment (LCA) for the proposed subdivision of 14-22 Smiths Road, Emerald Beach. The LCA has been undertaken in reference to:

- Coffs Harbour City Council (2015). On-site Sewage Management Strategy;
- DLG (1998). Environment & Health Protection Guidelines: On-site Sewage Management for Single Households; and
- Standards Australia / Standards New Zealand (2012). AS/NZS 1547:2012 On-Site Domestic-wastewater Management.

In summary, the proposed subdivision of the Site into two lots will formalise the existing two dwellings onto separate lots. A reserve EMA of 252m² has been calculated and located on Proposed Lot 1 and Lot 2.

Further details are provided in the attached report. If you have any questions, please contact me.

Regards,

2Ros.

Strider Duerinckx

Project Ref: 2021-161-02

1. SITE EVALUATORS				
Name:	Strider Duerinckx	Date of Inspection: 05 May 2021		
Phone:	0402608396	Council area: Coffs Harbour		

2. ACCOMPANYING INFORMATION

FIGURES

Figure 1	Site Location		
Figure 2	Proposed Development Layout		
Figure 3	Existing Features		
Figure 4	Recommended Effluent Management Areas		
Figure 5	Minimum Lot Size Comparison		
APPENDICES			
Appendix A	Borehole Logs		
Appendix B	Soil Chemistry		

Appendix C Water Balance

3. SITE INFORMATION		
Address/locality of site: 14-22 Smiths Road. Emerald Beach	Owner/developer:	Christine Frewin

Proposed Development:

Based on plans provided by Newnham Karl Weir & Partners (NKWP) (Figure 2), it is proposed to subdivide the 10,629m² Site into two lots (Figure 2). Proposed Lot 1 containing the existing dwelling in the northern portion would be 5,626m². Proposed Lot 2 would contain the remainder of the lot with the existing dwelling in the southern portion, 5003m² in area.

Size/shape/layout:

The property is situated in the R5 large lot residential zone on the northeastern side of Smiths Road. The southern corner of the block is approximately 200m north of the Smiths Road/Pacific highway interchange, and approximately 40m from a large manmade freshwater dam. The site sits on a slight ridge line, with a slope of approximately 7% downhill from west to east. The site has some large trees and areas of maintained lawns.

Existing On-site Sewage Management System:

An existing OSMS is present on Proposed Lot 1, consisting of a concrete septic tank and three absorption trenches. The trench locations were surveyed by existing Inspection Outlets (IOs) (Figure 3).

3. SITE INFORMATION

An existing OSMS is also present on Proposed Lot 2 (Figure 3). The OSMS consists of a concrete septic tank, and a single absorption trench. No information exists regarding the length of the absorption trench, however when inspected the system was not failing and the trench location is well away from any proposed lot boundaries.

Water supply:

Tank water.

Photograph 1: Proposed Lot 1 dwelling, and reserve Effluent Management Area (EMA) on LH side of the photo.

Photograph 2: Proposed Lot 2 dwelling, and reserve EMA on LH side of the photo.

4. SITE ASSESSMENT		Limitation		
		Minor	Moderate	Major
Climate: Sub-tropical to temperate clima	ite	Both lots		
Average maximum high temperature range <15°C? N	lo.			
Flood potential:				
Land application area above 1 in 20 year flood level?	Yes	Both lots		
Land application area above 1 in 100 year flood level?	Yes	Both lots		
Electrical components above 1 in 100 year flood level?	Yes	Both lots		
Exposure: The proposed EMAs will be located on a no facing slope cleared of trees.	rtheast	Both lots		
Slope: Slopes of 6-8% to the east.		Both lots		
Landform:		Both lots		
Lot 1 - The proposed EMA will be situated on a waxing divergent landform.	5			
Lot 2 - The proposed EMA will be situated on a waxing divergent landform.	5			
Run-on and seepage: The proposed EMAs are in a mic position. Catchment from road boundary. No seepage		Both lots		
Erosion potential: There is minimal risk of erosion wh is disturbed due to the slope and soils.	en soil	Both lots		
Site drainage:		Both lots		
Lot 1 – Eastward drainage. The nearest drainage to the proposed EMA a large manmade dam approximately downslope.				
Lot 2 – Eastward drainage. The nearest drainage to th proposed EMA is a large manmade dam approximatel downslope.				
Fill: None noted in the EMA.		Both lots		
Surface rocks: None evident.		Both lots		
Groundwater: (NSW Office of Water Groundwate Search)	r Bore			Both lots

Horizontal distance to groundwater well used for domestic water supply: There is one registered domestic bore approximately 130m from the proposed EMAs. The bore (GW051796) I located over the ridgeline to the south.		
Groundwater vulnerability? The risk to groundwater is minor given the clay subsoil, expected fractured bedrock aquifer and buffer distance.		

5. SOIL ASSESSMENT		Limitation				
Number of boreholes drilled: One boreho Figure 4.	Number of boreholes drilled: One borehole was drilled. See Appendix A and Figure 4.					
Depth to bedrock or hardpan (m): The without refusing.	borehole was extended to 1.2m depth	Minor				
Depth to high soil watertable (m): Perma depth based on position in the landscape		Minor				
landscape located on undulating rises and aged metasediments of the Coramba and	Soil landscape unit: Ulong Soil Landscape is an erosional/residual soil landscape located on undulating rises and rolling low hills on Late Carboniferous-aged metasediments of the Coramba and Brooklana Beds. Soils are typically deep (>1m), moderately well-drained red and brown earth, with variability depending on landscape position.					
Limitations include high erodibility, localis hardsetting with low subsoil permeability						
Soil Profile:						
 Approximately 150mm of clay loam, and <10% coarse fragments, strong strong 	dark brown, with some orange mottling tructure; overlying					
 Approximately 350mm of light clay, li orange and grey mottling and <10% s charcoal fragments, strong structure; 						
 At least 700mm of light to medium cl mottling and <10% sub-angular coars 						
Hydraulic loading rate						
Soil structure:						
Soil texture:						
Permeability category:						
Hydraulic loading recommended:						

5. SOIL ASSESSMENT	Limitation
Reasons for the hydraulic loading recommendation: Good soil structure	
and light clay soil profile.	Moderate
Coarse fragments % (>2mm): <15% qtz	Minor
Soil chemical testing was undertaken of one sample from 0.4-0.6m depth in BH2 by Lismore, for their standard wastewater soil capability suite. The analytical report is Appendix B.	
pH: 4.65 pH Units. Strongly acidic soils.	Moderate
Electrical conductivity (dS/m): 0.432dS/cm.	Minor
Dispersiveness: Class 3/6 (Slake 3).	Major
Cation Exchange Capacity: 6.4 cmol+/kg	Minor
Exchangeable Sodium Percentage: 1.4 cmol+/kg	Minor
PSorp: 11,416 kg/ha	Minor

6. SYSTEM SELECTION

Consideration of connection to a centralised sewerage system: Unlikely due to rural location.

Type of treatment and land application system considered best suited to site:

Given the resultant lot size, in case of failure of the existing OSMS, future treatment to a secondary standard and subsurface application into an appropriately sized absorption bed field is considered a reasonable minimum combination.

7. WASTEWATER ENVELOPE SIZING

Expected wastewater quantity (litres/day):

4-bedroom dwelling modelled $4 \times 1.5 \times 150L/p/day = 720L/day$

Hydraulic Balance:

Monthly nominated area water balance modelling undertaken. See Appendix C.

Data Parameter	Units	Value	Comments
Hydraulic load	L/day	720	
Precipitation	mm/month	Coffs Harbour	Median rainfall from BOM.

7. WASTEWATE	7. WASTEWATER ENVELOPE SIZING					
Pan Evaporation	mm/month	Coffs Harbour MO	Average evaporation from BOM.			
Retained rainfall	unitless	0.95	Proportion of rainfall that remains onsite and infiltrates the soil			
Crop Factor	unitless	0.6-0.8	Typical annual range expected in an open position with no shading.			
Design Loading Rate (DLR)	mm/day	12	Based on strongly-structured light clay soil and absorption beds from AS/NZS 1547:2012.			
Area required for hydraulic sizing	m ²	70	Equals 158m ² bed field.			
Area required for Nitrogen	m ²	252	Limiting			
Area required for Phosphorus	m ²	223				

Effluent Management Area:

Based on water and nutrient balance modelling of a conservative 4 bedroom dwelling, a reserve EMA of 252m² is required to allow for hydraulic and nutrient loading.

This footprint has been allowed as a reserve area on Proposed Lot 1 and Lot 2 in case of failure of the existing OSMS (Figure 4).

8. MINIMUM LOT SIZE ANALYSIS

A minimum lot size analysis and modelling were completed to determine the maximum lot density suitable for subdivision on the Site. When considering the suitability for a lot to sustainably manage wastewater on-site, we typically refer to 'available effluent management area'. This broadly refers to available areas (i.e. not built out or used for a conflicting purpose) where OSMS will not be unduly constrained by site and soil characteristics. Available area on a developed a lot is determined by the following factors:

- total building area (including dwellings, sheds, pools etc.) which includes a defined building envelope but may extend beyond with additional improvements to a property, such as driveways and paths (impervious areas), and gardens/vegetated areas unsuitable for effluent reuse;
- dams, intermittent and permanent watercourses running through lots;
- maintenance of appropriate buffer distances from property boundaries, buildings, driveways and paths, dams and watercourses;

8. MINIMUM LOT SIZE ANALYSIS

- flood prone land;
- excessive slope;
- excessively shallow soils;
- heavy (clay) soils with low permeability;
- excessively poor drainage, shallow groundwater and/or stormwater run-on; and
- excessive shading by vegetation.

The residual areas (areas not otherwise occupied by improvements, buffers, restrictions or conservation vegetation) were then calculated for the selected lots, and the available area compared to the wastewater envelope required.

MLS Buffers:

Buffer distances from EMAs are typically enforced to minimise risk to public health, maintain public amenity and protect sensitive environments. Generally, adopted environmental buffers for secondary treated effluent land applied into absorption trenches/ beds based on DLG (1998) are:

- 250m from domestic groundwater bores;
- 100m from permanent watercourses;
- 40m from intermittent watercourses and dams;
- 6m from downslope property boundaries and 3m from upslope property boundaries; and
- 6m from downslope buildings and 3m from upslope buildings.

In addition, developed areas such as inground water tanks and swimming pools were also buffered.

Secondary treatment was selected for modelling purposes. Primary treatment may be possible on a case by case for the proposed lots on No.9 and 189 Gaudrons Road subject to soil depth and buffer requirements for such OSMS.

MLS Comparative Lots Assessed:

Six nearby R5 zoned representative lots were selected that have already been subdivided (Figure 5). The lots ranged in size from 1,689-4,212m² area.

- 39-41 Gaudrons Road 4,005m²
- 45 Gaudrons Road 4,001m²
- 75 Gaudrons Road 4,212m²
- 79 Gaudrons Road 1,689m²
- 81 Gaudrons Road 1,788m²
- 160 Gaudrons Road 2,830m²

The properties typically included a dwelling, garage/shed, landscaped trees, shrubs and gardens, driveways, water tanks, and recreational space. This development style will be similar to that proposed for the Site and therefore minimum lot size and development potential should be consistent.

8. MINIMUM LOT SIZE ANALYSIS

MLS Assessed Available EMA:

The assessment of available effluent management areas for each of the assessed lots is presented below. As is evident, the variability of lot sizes, on-lot improvements and restrictions of developed lots makes selection of a "typical" lot difficult, however comparison of the site constraints indicates that minimum lot size is the most significant issue to address.

From the sample selection of lots investigated, three of the lots are significantly smaller than the nominated minimum 5,000m² lot size, being 1,689 1,788 and 2,830m². Of these only the 2,830m² property (No. 160) has available effluent management area. This is because the existing dwelling is located hard against the southern boundary with no associated sheds, garages, swimming pools etc. The other two small lots by nature of the lot size and buffer constraints to site features have in effect no available effluent management area and wastewater application is compromised;

The remaining three properties of 4,001-4,212m² have each about 1,800m² of available unconstrained area for effluent application. Allowing for additional developed footprint such as sheds and swimming pools that may not be present currently, and constraints such as buffers to gullies and protected forest vegetation, the minimum 504m² footprint required for a secondary treatment and land application OSMS (primary and reserve envelopes) would still be able to be met

ld	Lot Area (m²)	Developed Area (m²) ¹	Total Restricted Area (m²)²	Available Eff. Application Area (m ²)	Percent of Lot Available for Eff. Disp. (%)	>504m ² Area Available for Secondary Treatment?
39-41	4,005	1,293	2,142	1,873	47	Yes
45	4,001	1,166	2,154	1,843	46	Yes
75	4,212	1,564	2,377	1,827	43	Yes
79	1,689	630	1,546	143	8	No
81	1,788	771	1,788	0	0	No
160	2,830	560	1,808	1,022	36	Yes

As such, given the low slopes and limited site and soil constraints, a minimum 5,000m² lot sizing at 14-22 Smiths Road would be considered acceptable.

1. House, driveway, shed etc

2. Includes developed area, protected vegetation and buffers to waterways and boundaries

9.	BUFFERS				
Buffe	Buffer distances from EMA to: Meets Buffers				
	Permanent waters	>100m	Yes		
	Other waters	40m	Yes		
	Domestic Groundwater Bore	250m	No, 130m		
	Boundary of premises	6/12m	Yes		
	Driveways	3/6m	Yes		
	Buildings	3/6m	Yes		

Buffers:

Buffers to all constraints are achievable for the existing OSMS except to licensed domestic groundwater bores. A buffer of 130m is available, but a 250m buffer is suggested by DLG (1998) Guidelines.

The OSMS are existing, and the bore is located over a topographical ridgeline, and as such the proposed subdivision does not increase the risk.

Appendix R of AS/NZS1547:2012 provides for risk assessable buffers to constraints including bores. A maximum buffer of 50m is allowed for high risk situations such as shallow sand extraction aquifers; unlike the existing conditions of a deep bedrock aquifer beneath clays.

As such the available 130m is considered acceptable.

	Prop Con	END perty Boundary tour Line (2m) S nage Alignment	E De % S	xisting Septic Tank xisting EMA clope Direction orehole Location
Existing Site	e Layout			FIGURE Figure 3 Sheet 1 OF1 ISSUE A
_CA for 14-22 Smiths Road, Emerald Beach				Christine Frewin
	DATE	SCALE		PROJECT
	24/5/21	1:600		2021–161

LEGEND Property Bound Contour Line (2 Drainage Alignm	m)		Driveway Existing Building Rainwater Tank Recommended I	l Effluent Management Area
Recommended Areas	d Effluen	it manager	ment	FIGURE Figure 4 Sheet 1 OF1 <mark>Issue B</mark>
PROJECT LCA for 14- Emerald Bea		s Road,		Christine Frewin
AUTHOR	DATE	SCALE		PROJECT
SD	16/6/21	1:600		2021–161

160 Gaudrons Road

MLS 75-81 Gaudrons Road

Minimum Lot	Size Com	Darison	^{FIGURE} Figure 5	i i
	ľ		SHEET 1 OF1	issue A
LCA for 14- Emerald Bea		5 Road,	Christ Frewin	_
AUTHOR	DATE	SCALE	PROJECT	
SD	16/6/21	1:1000	2021-161	

39-41 and 45 Gaudrons Road

Soil Borelog

•							Borehole	No:	BH1	
6	VSUL	TING					Logged by:		NS	
	1301						Drilling date	e:	5/05/20)21
Project	ref:	2021-1	61				Drilling met	hod:	Hand au	uger
Client:		Christir	ne Frev	win			Borehole lo	cation:	Figure 2	2
Address	s:	22 Smit	hs Dri	ve			Borehole co	ords:	051602	3, 6662069
PROFI	LE DES	SCRIPT	ION							
Depth (m)	Sampling depth/name	Graphic Log	Horizon	Texture	Structure	Colour	Mottles	Coarse Fragments	Moisture Condition	Comments
0.1			A1	Clay Loam	Strong	Dark brown	Orange	<10%	SM	Topsoil
0.2			B1	Light Clay	Strong	Light brown pale yellow	Grey orange	<10%	SM	Residual
0.3	BH1_ 0.2-0.4									
0.4	0.2 0.4									
0.5										
0.6	BH1_		B2	Light Clay to Medium	Strong	Light brown pale yellow	Nil	<5%	SM	Residual
	 0.5-0.7			Clay		pure yenow				
						becoming	Pink			
0.8						orange				
0.9										
1.0 1.1										
1.1										
					Boreh	ole terminated a	at 1.2m			
1.3										
1.4										
1.5	Maia		004:	tion						
	D SM	ture c Dry Sligh	onal tly moi		M VM	Moist Very moist		W	Wet /	saturated

WASTEWATER DISPOSAL SOIL ASSESSMENT

1 sample supplied by Earth Water Consulting Pty Ltd on the 30th April, 2021 - Lab Job No. K6423 Analysis requested by Strider Duerinckx. - **Your Project: BH2** PO BOX 50 BELLINGEN NSW 2454

	SAMPLE 1 BH2 0.3-0.5m
Job No.	K6423/1
Description	Medium Clay
Moisture Content (% moisture)	16.7
Emerson Aggregate Stability Test (SAR 5 Solution) note 12	*3/6, Slake 3 ^{see note 12}
Soil pH (1:5 CaCl ₂)	4.65
Soil Conductivity (1:5 water dS/m)	0.050
Soil Conductivity (as $EC_e dS/m$) ^{note 10}	0.432
Native NaOH Phosphorus (mg/kg P)	40.62
Residual phosphorus remaining in solution from the initial phosphate phosphorus	
Initial Phosphorus concentration (ppm P)	30.00
72 hour - 3 Day (ppm P)	14.10
120 hour - 5 Day (ppm P)	11.73
168 hour - 7 Day (ppm P)	12.09
Equilibrium Phosphorus (ppm P)	9.97
EXCHANGEABLE CATIONS	
Calcium (cmol+/kg)	2.36
Magnesium (cmol+/kg)	2.30
Potassium (cmol+/kg)	0.17
Sodium (cmol+/kg)	0.09
Aluminium (cmol+/kg) Hydrogen (cmol+/kg)	0.77 0.67
ECEC (effective cation exchange capacity)(cmol+/kg)	6.4
Exchangeable Calcium %	37.1
Exchangeable Magnesium %	36.2
Exchangeable Potassium %	2.7
Exchangeable Sodium % (ESP)	1.4
Exchangeable Aluminium %	12.1
Exchangeable Hydrogen %	10.5
Calcium/ Magnesium Ratio	1.02

Notes:

1: ECEC = Effective Cation Exchange Capacity = sum of the exchangeable Mg, Ca, Na, K, H and Al

2: Exchangeable bases determined using standard Ammonium Acetate extract (Method 15D3) with no pretreatment for soluble salts. When Conductivity ≥0.25 dS/m soluble salts are removed (Method 15E2).

3. ppm = mg/kg dried soil

4. Insitu P determined using 0.1M NaOH and shaking for 24 hrs before determining phosphate

5. Soils were crushed using a ceramic grinding head and mill; five 1g subsamples of each soil were used to

which 40ml of 0.1M NaCl with Xppm phosphorus was added to each. The samples were shaken on an orbital shaker

6. Exchangeable sodium percentage (ESP) is calculated as sodium (cmol+/kg) divided by ECEC

7. All results as dry weight DW - soils were dried at 60C for 48hrs prior to crushing and analysis.

8. Phosphorus Capacity method from Ryden and Pratt, 1980.

9. Aluminium detection limit is 0.05 cmol+/kg; Hydrogen detection limit is 0.1 cmol+/kg.

However for calculation purposes a value of 0 is used.

10. For conductivity 1 dS/m = 1 mS/cm = 1000 μ S/cm; EC_e conversions: sand loam 14, loam 9.5; clay loam 8.6; heavy clay 5.8

11.1 cmol+/kg = 1 meq/100g

12. Emerson Aggregate Stability Test (EAST) for Wastewater applications (see Sheet 3 - Patterson, 2015), MEAT Class 1: Slaking, complete dispersion;

Class 2: Slaking, some dispersion; Class 3-6: Slaking 1 slight to 3 complete, No dispersion; Class 7: No slaking, yes swelling; Class 8: No slaking, no swelling. 13. Analysis conducted between sample arrival date and reporting date.

14... Denotes not requested.

15. This report is not to be reproduced except in full.

16. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer scu.edu.au/eal or on request).

PHOSPHORUS SORPTION TRIAL

1 sample supplied by Earth Water Consulting Pty Ltd on the 30th April, 2021 - Lab Job No. K6423 Analysis requested by Strider Duerinckx. - Your Project: BH2

Calculations for Equilibrium Absorption Maximum for Soil provided

I.D.	JOB NO.	Equilibrium P mg P/L (in solution)	Added P mg P/L	P Sorb at Equil. mg P/kg	Native P mg P/kg	Equilibrium P Sorption Level µg P/g soil	Divide Ø (from Table)	Equilibrium Absorption Maximum (B) μg P/g soil
BH2 0.3-0.5m	K6423/1	10.0	30	801	41	842	0.77	1,094

Calculations for phosphorus sorption capacity

	JOB NO.	Equilibrium Absorption Maximum (B) µg P/g soil	multiply by theta of wastewater to be applied (=X)	native P	5	kg P sorption / hectare (to a depth of 100cm) (1.95 is a correction factor for density, etc)
BH2 0.3-0.5m	K6423/1	1094	(=B x theta)	(=X -native P)	(=Y x 1.95)	(=Y x 1.95 x 100/15)

EXAMPLE 1 - Calculations for phosphorus sorption capacity using a wastewater phosphorus of 15mg/LP

	JOB NO.	Equilibrium Absorption Maximum (B) µg P/g soil	multiply by theta of wastewater to be applied (ie. 0.84)		(to a depth of 15cm)	kg P sorption / hectare (to a depth of 100cm) (1.95 is a correction factor for density, etc)
BH2 0.3-0.5m	K6423/1	1094	919	878	1,712	11,416

			Nomir	ated	Area Wa	ter Balaı	nce &	Storage	Calcula	tions						
ite Address:	14-22 Smit	hs Road, Emera	ld Beach		Proj Ref:	2021-161									RTH	VA,
Flow Allowance		120	l/p/d		Notes:									1 4		in R
No. of Persons		4	p													
Occupancy		1.5	p/room											•		
Design Wastewater Flow	Q	720	L/day													7 0
Daily DLR		12.0	mm/day												ONSUL	412
Crop Factor	С	0.6-0.8	unitless												VSUL	
Retained Rainfall Coefficient	RRc	0.95	untiless													
Void Space Ratio		0.3	unitless													
Nominated Land Application Area		70	sqm													
Trench/Bed wetted thickness		0.1	m													
Rainfall Data		ur Rainfall Data (mo														
Evaporation Data	Coffs Harbo	our Evap Data (mor	thly average)]		
Parameter	Symbol	Formula	Units	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Тс
Days in month	D	\	days	31	28	31	30	31	30	31	31	30	31	30	31	3
Median Rainfall	R	\	mm/month	151.2	179	205.1	135.9	117.4	90	54.3	40.7	35.4	74.7	130.4	114.1	163
Average Evaporation	E	١	mm/month	192.2	156.8	148.8	117	86.8	69	77.5	105.4	135	161.2	171	192.2	
Crop Factor	С			0.80	0.80	0.80	0.70	0.70	0.60	0.60	0.60	0.70	0.70	0.80	0.80	
OUTPUTS																
Evapotranspiration	ET	ExC	mm/month	154	125	119	82	61	41	47	63	95	113	137	154	118
Percolation	В	DLRxD	mm/month	372.0	336	372.0	360.0	372.0	360.0	372.0	372.0	360.0	372.0	360.0	372.0	43
Outputs		ET+B	mm/month	525.8	461.44	491.0	441.9	432.8	401.4	418.5	435.2	454.5	484.8	496.8	525.8	55
INPUTS																
Retained Rainfall	RR	R*RRc	mm/month	143.64	170.05	194.845	129.105	111.53	85.5	51.585	38.665	33.63	70.965	123.88	108.395	126
Effluent Irrigation	W	(QxD)/L	mm/month	318.9	288.0	318.9	308.6	318.9	308.6	318.9	318.9	308.6	318.9	308.6	318.9	375
Inputs		RR+W	mm/month	462.5	458.1	513.7	437.7	430.4	394.1	370.4	357.5	342.2	389.8	432.5	427.3	501
STORAGE CALCULATION					0.0	0.0	75 5	C1 F	F2 C	20.1	0.0	0.0	0.0	0.0	0.0	
Storage remaining from previous month	S	(DD.))() (ET.D)	mm/month mm/month	-210.9	0.0 -11.3	0.0 75.5	75.5 -14.1	61.5 -7.9	53.6 -24.4	29.1 -160.2	0.0 -259.1	0.0 -374.3	0.0 -316.7	0.0 -214.5	0.0 -328.4	
Storage for the month	M	(RR+W)-(ET+B)		-210.9	-11.3	75.5	-14.1 61.5	-7.9 53.6	-24.4 29.1	-160.2	-259.1	-374.3	-316.7	-214.5	-328.4	-40 21
Cumulative Storage Maximum Bed Storage Depth for Area	BS		mm mm	75.54		d storage accepta			s conservative	0.0	0.0	0.0	0.0	0.0	0.0	21:
Maximum bed Storage Deptimor Area	5			/3.34	is the calculate	a storage accepta	able:	ies, storage i	s conservative							
Nominated to	ench width	0.9														
Total length based on nomin	nated width	77.8														
	No. of beds	4														
Individual	bed lengths	19.4														
Individual Be	d footprints	17.5														
Spacing be	tween beds	1.5														
	of bed area	8.1														
	al bed area	158	-													
Nutrient u	ıptake zone	284	2m buffer nutr	ient uptake	allowance											

EWC

Nutrient Balance

Proj Ref: 2021-161

Site Address: 14-22 Smiths Road, Emerald Beach

Notes:

INPUT DATA				
Hydraulic Load		720	L/Day	
Effluent N Concentration	30	mg/L		
% Lost to Soil Processes		0.2	Decimal	
Total N Loss to Soil		4320	mg/day	
Effluent P Concentration		12	mg/L	
Design Life of System		50	yrs	
Crop N Uptake	250	kg/ha/yr =	68	mg/m²/day
Crop P Uptake	25	kg/ha/yr =	7	mg/m²/day
P-sorption analytical result in soil	l	11416	kg/ha	
% of Predicted P-sorp		0.75	Decimal	
Nitrogen Balance				
Nitrogen uptake ability in vegeta	tion	68	mg/m²/day	_
Nitrgen loading in wastewater			mg/day	
Area required for nitrogen		252	m²	
Phosphorus Balance				_
P adsorbed		0.8562	kg/m ²	
P uptake	0.125	kg/m²		
P generated	219 223			
Area required for Phosphorus	Area required for Phosphorus			